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Abstract. We review the extension of the factorization formalism of perturbative QCD to coherent soft
rescattering associated with hard scattering in high energy nuclear collisions. We emphasize the ability
to quantify high order corrections and the predictive power of the factorization approach in terms of
universal non-perturbative matrix elements. Although coherent rescattering effects are power suppressed
by the hard scales of the scattering, they are enhanced by the nuclear size and could play an important
role in understanding the novel nuclear dependence observed in high energy nuclear collisions.

PACS. 12.38.Bx, 12.39.St, 24.85.+p

1 Introduction

Rescattering in hadron–nucleus and heavy-ion collisions
provides an excellent tool to diagnose the properties of
the nuclear medium and could play an important role in
understanding the novel nuclear dependence recently ob-
served at the relativistic heavy-ion collider (RHIC) and
in planning future experiments at the Large Hadron Col-
lider (LHC). Many approaches in studying the rescatter-
ing effects have been proposed and used for calculating
the nuclear dependence in high energy nuclear collisions
[1–7].

In this talk, we focus on the treatment of coherent soft
rescattering associated with hard probes [2,3]. Our work
is based on the perturbative QCD (pQCD) factorization
approach, which is different from the works of Baier et al.
(BDMPS) [4] and Zakharov [5], and the reaction opera-
tor approach of Gyulassy et al. [6]. The BDMPS analysis
does not require the presence of hard scattering, but de-
scribes the coherent results of many soft scatterings. Its
primary subject is the induced energy loss. Our analysis
requires a hard scale, and begins with the pQCD treat-
ment of hard scattering with emphasis on the momentum
transfer, caused by coherent initial- and final-state soft
scatterings [2,3]. Our work attempts to stay as close as
possible to the pQCD factorization formalism, in which we
may readily quantify the high order corrections in powers
of the strong coupling constant αs, as well as corrections
that decrease with extra powers of the momentum transfer
[8–11].

In the following we consider only the initial- and final-
state interaction in leading power in the medium length
(A1/3) and in αs at each scattering. We first identify the
coherence length in nuclear collisions and the source of
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Fig. 1. Sketch for the scattering of a parton (or a lepton) in a
large nucleus with a momentum transfer qµ

the leading medium-size enhancement. We then apply the
pQCD factorization approach to calculate the leading nu-
clear dependence in several physical observables. We show
that if we neglect soft rescattering off quark fields [12,13],
the leading medium effects induced by multiple soft rescat-
tering depend on only one well-defined non-perturbative
matrix element, 〈F+αF +

α 〉, defined below. We extract its
value from different physical measurements and discuss its
universality. A brief summary is given at the end.

2 Coherent multiple scattering
and leading nuclear A-dependence

A hard probe corresponds to a scattering process with
a large momentum exchange qµ whose invariant mass
Q ≡ √|q2| � ΛQCD, as sketched in Fig. 1. It can probe
a space-time dimension much smaller than a nucleon at
rest, 1/Q � 2R ∼ fm, with nucleon radius R. But the
same probe might cover a whole Lorentz contracted large
nucleus, if 1/Q > 2R(m/p) with averaged nucleon momen-
tum p and mass m, or equivalently, x � xc ≡ 1/2mR ∼
0.1 with x being an active parton momentum fraction in
the scattering, xp ∼ Q. The critical value xc corresponds
to the nucleon size. If the active x is much smaller than
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Fig. 2. Coherent multiple scattering of the struck parton in
deep inelastic scattering a and in t-channel in hadron–nucleus
collisions b

xc, a hard probe could cover several nucleons in a Lorentz
contracted large nucleus and interact with partons from
different nucleons coherently.

Inclusive deep inelastic scattering (DIS) on a nucleus
offers an ideal example of coherent multiple scattering and
power corrections [11]. The strength of the scattering is
defined by the virtual photon momentum, qµ. Let qµ =
−xBp

µ + Q2/(2xBp · n)nµ with nµ defined along a light-
cone direction opposite to that of pµ. While the Q2 = −q2
sets up the hard collision scale, the scattered quark probes
the nuclear matter via multiple soft final-state interac-
tions. When the Bjorken variable xB ≡ Q2/2p · q � xc,
the multiple scatterings at a given impact parameter are
coherent over the entire size of the Lorentz contracted nu-
cleus. This is best seen in the Breit frame, as shown in
Fig. 2a, where the incoming quark reverses its direction
after interacting with the virtual photon and collides with
the “remnants” of the nucleus at the same impact pa-
rameter. The same coherent multiple scatterings can take
place in hadron–nucleus collisions along the direction of
momentum exchange of the scattering [14], as shown in
Fig. 2b.

To identify the leading medium length enhanced nu-
clear effects, let us consider the multiple scattering con-
tribution to inclusive DIS off a large nucleus, as sketched
in Fig. 2a. For a spin-averaged inclusive DIS cross section,
there is only one large momentum scale, Q, the “invariant
mass” of the exchanged virtual photon, and the factoriza-
tion is expected to be valid for all power corrections as
a consequence of the operator product expansion (OPE)
[15]:

dσγ∗A
DIS = dσ̂i

2 ⊗
[
1 + c(1,2)αs + c(2,2)α2

s + . . .
]

⊗ T
i/A
2

+
dσ̂i

4

Q2 ⊗
[
1 + c(1,4)αs + c(2,4)α2

s + . . .
]

⊗ T
i/A
4

+
dσ̂i

6

Q4 ⊗
[
1 + c(1,6)αs + c(2,6)α2

s + . . .
]

⊗ T
i/A
6

+ . . . (1)

where ⊗ represents convolutions in the fractional mo-
menta carried by partons and Tn represents the parton
correlation function or a matrix element of a twist-n op-
erator. In (1), the σ̂i

n and c(j,n) are perturbatively calcu-
lable short-distance partonic cross sections or coefficient
functions, which are independent of the target size. There-
fore, we need to find the nuclear-size (A1/3-type) enhance-
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Fig. 3. a Diagram with poles that give rise to an A1/3-type
enhancement to the DIS cross section off a large nucleus; and
b corresponding twist-4 quark–gluon correlation function

ment induced by multiple rescattering from the matrix
elements, if there is any.

The leading twist parton distributions, T2, represent
the probability densities to find a single parton in a tar-
get and can have some nuclear dependence via the input
distributions to their DGLAP evolution equations. The
A1/3-type target-size enhancement of the DIS cross sec-
tion can only appear in the terms beyond the first row in
(1). For definiteness, let us consider a leading power sup-
pressed contribution to the DIS cross section, as shown in
Fig. 3a, which can be factorized into the form according
to (1) [2],

dσ(4)
A =

∑
(ii′)

∫
dx1 dx2 dx3 T

(4)
(ii′)/pA

(x1, x2, x3)

×dσ̂(4)
(ii′)(x1, x2, x3) . (2)

The matrix element T (4), as sketched in Fig. 3b, is typi-
cally of the form [8]

T(ii′)/pA
(x1, x2, x3)

∝
∫

dy−
1 dy−

2 dy−
3

(2π)3
eip+(x1y−

1 +x2y−
2 +x3y−

3 )

× 〈pA|B†
i (0)B†

i′(y−
3 )Bi′(y−

2 )Bi(y−
1 )|pA〉 , (3)

where p = pA/A, and Bi is the field corresponding to a
parton of type i = q, q̄, G. The structure of the target is
manifest only in the matrix element T in (2). Each pair of
fields in the matrix element (3) represents a parton that
participates in the hard scattering. The y−

i integrals cover
the distance between the positions of these particles along
the path of the outgoing scattered quark. In (3), integrals
over the distances y−

i generally cannot grow with the size
of the target because of oscillations from the exponential
factors eip+xiy

−
i .

Since the kinematics of a single-scale hard collision is
only sensitive to the total momentum from the target, two
of the three momentum fractions, x1, x2, and x3 cannot be
fixed by the hard collisions. Therefore, there is always a
subset of Feynman diagrams, like the one in Fig. 3a with
poles labeled by the crosses “×”, whose contribution to
the partonic parts, σ̂(4)

(ii′) in (2), is dominated by the re-
gions where two of the three momentum fractions vanish.
The convolution over dx1 dx2 dx3 in (2) is simplified to an
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Fig. 4. Tree diagrams give leading medium-size enhanced con-
tributions to the DIS cross sections

integration over only one momentum fraction,

∫ 3∏
i=1

dxi T(jj′)/pA
({xi}) σ̂(4)

(jj′)({xi}p)

=⇒
∫

dxTq(x,A) σ̂(D)
(q) (xp), (4)

where the partonic part σ̂(D) is finite and perturbative,
with the superscript (D) indicating the contribution from
double scattering. The above matrix element, Tq(x,A), as
illustrated in Fig. 3b, has the form

Tq(x,A)

=
∫

dy−
1

2π
eip+xy−

1

∫
dy−

2 dy−
3

2π
θ(y−

2 − y−
1 )θ(y−

3 ) (5)

×1
2
〈pA|q̄(0)γ+Fα+(y−

3 )F+
α(y−

2 )q(y−
1 )|pA〉,

where |pA〉 is the relevant nuclear state. The variable x
here is the fractional momentum associated with the hard
parton from the target that initiates the process. The sim-
ilar gluon–gluon correlation function Tg(x,A) is also im-
portant [16]. In this type of twist-4 parton–parton corre-
lation functions, two integrals over y− and y−

2 can grow
with the nuclear radius. However, if we require local color
confinement, the difference between the light-cone coordi-
nates of the two field strengths should be limited to the
nucleon size and only one of the two y−

i integrals can be
extended to the size of nuclear target. The twist-4 parton–
parton correlation functions are then proportional to the
size of the target, that is, enhanced by A1/3.

It is important to emphasize that using a pole in the
complex xi (longitudinal momentum) space to do the in-
tegral does not assume on-shell propagation for the scat-
tered quark. Indeed, the xi integrals are not pinched be-
tween coalescing singularities at such points, and the same
results could be derived by performing the xi integrals
without going through the xi = 0 points [2].

3 Coherent power corrections in DIS

The inclusive DIS cross section on a nucleus provides an
unique probe for effects of coherent multiple scatterings by
varying the value of the Bjorken variable xB. Under the
approximation of one-photon exchange, the unpolarized

inclusive DIS cross section probes the two structure func-
tions FT(xB, Q

2) and FL(xB, Q
2), corresponding to the

transverse and longitudinal polarization states of the vir-
tual photon, respectively [17,18]. The structure functions
at the lowest order in αs are given by [17]

F
(LT)
T (xB, Q

2) =
1
2

∑
q

e2q q(xB, Q
2) + O(αs) , (6)

F
(LT)
L (xB, Q

2) = O(αs) , (7)

where (LT) indicates the leading twist contribution – the
first row in (1),

∑
q runs over the (anti)quark flavors, eq

is their fractional charge, and q(x,Q2) is the leading twist
quark distribution:

q(x,Q2) =
∫

dy−

2π
eixp+y−〈p|q̄(0)

γ+

2
q(y−)|p〉; (8)

in the lightcone gauge A+ = nµAµ = 0, we have for the
hadron momentum pµ = p+n̄µ with n̄µ = [1, 0, 0⊥] and
nµ = [0, 1, 0⊥].

The Feynman diagrams in Fig. 4 give the leading tree
level contributions to the lepton–nucleus DIS cross sec-
tion. The cut-line represents the final state [3]. For trans-
versely polarized photons Fig. 4a gives the leading twist
partonic contribution,

dσ̂(0)
T =

1
2
e2q δ(x− xB) , (9)

from which F (LT)
T in (6) is derived after convoluting with

the leading twist quark distribution in (8). Diagrams with
two gluons in Fig. 4b give the first power correction to the
transverse partonic cross section [3,18],

dσ̂(1)
T =

1
2
e2q

[
1

2Nc

]
g2

Q2

[
2π2F̃ 2(0)

]
xB

[
− d

dx
δ(x− xB)

]
,

(10)
with the two-gluon field operator[

F̃ 2(0)
]

=
∫

dy−
2 dy−

1

(2π)2
[
F+α(y−

2 )F +
α (y−

1 )
]
θ(y−

2 ) , (11)

and the first power correction to the transverse structure
function [3,18],

F
(1)
T (xB, Q

2) (12)

=
[
4π2αs

Q2

(
1

2Nc

)]
1
2

∑
q

e2q xB
d

dxB
Tq(xB, A),

with the correlation function, Tq(xB, A), given in (5).
The four-parton correlation functions Tq are non-

perturbative and must be taken from experiment. To es-
timate the magnitude of the Tq’s, we could choose the
simple ansatz [19]

Ti(x,A) = λ2A1/3 φi/pA
(x,A) (13)

for i = q, g in terms of the corresponding twist-2 effective
nuclear parton distribution φi/A. We choose this form be-
cause we expect the x-dependence of the probability to
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Fig. 5. Sketch for the x-dependence of normal a and saturated
b parton distributions

detect the hard parton to be essentially unaffected by the
presence or absence of an additional soft scattering. In
(13) λ is assumed to be a constant with the dimension of
mass. This ansatz facilitates the comparison to the data
[2].

If we further assume that a nucleus is made of a group
of loosely bound color singlet nucleons, packed in a hard
sphere of radius RA1/3, we can approximate the matrix
element of nuclear state in (5) into a product of matrix
elements of nucleon states [3,20],

〈pA|q̄(0)
γ+

2

[
F̃ 2(0)

]
q(y−)|pA〉 (14)

≈ A

2π

[
3
4RA

1/3

1
4π
3 R3

]
〈F+αF +

α 〉 〈p|q̄(0)
γ+

2
q(y−)|p〉,

with p = pA/A and the two-gluon matrix element [3]

〈F+αF +
α 〉 ≡ 1

p+

∫
dy−

2π
〈p|F+α(0)F +

α (y−)|p〉θ(y−) .

(15)
Substituting (15) into the definition of the quark–gluon
correlation function, Tq(x,A) in (5), we derive

λ2 ≈
(

3
4
R

) (
1

4π
3 R

3

)
〈F+αF +

α 〉 , (16)

and

F
(1)
T (xB, Q

2) ≈ 3παs

8Q2R2 〈F+αF +
α 〉

(
A1/3 − 1

)

×1
2

∑
q

e2q xB
d

dxB
qA(xB, Q

2), (17)

where qA defined in (8) with p = pA/A. In deriving (17),
we used A1/3 − 1 instead of A1/3 for the line integral be-
tween the two pairs of field operators in (15) so that the
nuclear effect vanishes for A = 1 [3]. From (17) and the
known generic x-dependence of theparton distributions, as
sketched in Fig. 5a, the leading coherent power correction
suppresses the DIS cross section or structure functions at
small xB.

If xB is small enough, the virtual photon could interact
coherently with all nucleons inside a large nucleus. From
the Feynman diagrams in Fig. 4c with 2N gluons, we de-
rive the leading Nth coherent power corrections to the

transverse structure function [3],

F
(N)
T (xB, Q

2) =
[

3παs

8Q2R2 〈F+αF +
α 〉

(
A1/3 − 1

)]N

(18)

×1
2

∑
q

e2q
1
N !

xN
B

dN

dxN
B
qA(xB, Q

2).

Summing over all leading A1/3-enhanced power correc-
tions, the first column of the right-hand side of (1), we
obtain [3]

FA
T (xB, Q

2) (19)

=
N∑

n=0

1
n!

[
ξ2

Q2

(
A1/3 − 1

)]n

xn
B

dn

dxn
B
F

A(LT)
T (xB, Q

2),

with the characteristic scale of the power corrections

ξ2 ≡ 3παs

8R2 〈F+αF+
α〉 . (20)

If we approximate N ∼ ∞ in (19), we obtain

FA
T (xB, Q

2) ≈ F
A(LT)
T (xB(1 +∆), Q2), (21)

with ∆ ≡ (A1/3−1) ξ2/Q2, a shift in xB. A similar expres-
sion was derived for the longitudinal structure function
FA

L (xB, Q
2) [3].

With only one unknown matrix element, 〈F+αF +
α 〉,

our calculated results can be easily tested and challenged.
From (21), the nuclear dependence in the structure func-
tions should come from two distinctive sources: a uni-
versal A-dependence in leading twist parton distributions
and a process sensitive A-dependence from power correc-
tions [2,3]. By comparing our numerical results, evaluated
with CTEQ6 PDFs [21], with the data, we extract the
maximum size of the power corrections. For ξ2 = 0.09–
0.12 GeV2, our calculated reduction in the nuclear struc-
ture functions is consistent with the xB-, Q2- and A-
dependence of the data as demonstrated Fig. 6.

The predictive power of the factorization approach
resides in the universality of unknown matrix elements.
Without additional unknown matrix elements, our pre-
dictions for the neutrino DIS cross section on an iron tar-
get are consistent with NuTeV data [22,23]. At small and
moderate Q2, our prediction gives a very good description
of the SLAC E143 data on R = σL/σT of a 12C target [3,
24]

The resummed power correction has a non-trivial de-
pendence on the target A and kinematic variables xB and
Q2 because its connection to the x-dependence of the ac-
tive parton distribution. The effect disappears if the par-
ton distribution is saturated at a very small x, as sketched
in Fig. 5b. The leading power correction calculated here is
a consequence of the limited phase space in a given col-
lision. If we would integrate over xB from −∞ (or zero)
to ∞ for a purely inclusive process (or a process with an
infinite collision energy), the F (N)

T vanishes for N �= 0 due
to the unitarity condition [8].
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Fig. 6. From [3], all-twist resummed F2(A)/F2(D) calcula-
tion versus DIS data on nuclei [25]. Data-Theory ∆D−T is also
shown

QCD factorization systematically moves all collinear
divergences from partonic scattering into long-distance
matrix elements. At the leading power, DGLAP evolved
parton distributions are sufficient to absorb all collinear
divergences in the γ∗–parton scattering cross section to
ensure the infra-safety of all coefficient functions in the
first row of (1). However, DGLAP evolved parton dis-
tributions do not remove collinear divergences involving
multiple parton recombination, like those in Fig. 7b,c. A
modified evolution equation taking into account the par-
ton recombination slows down the fast growth of the par-
ton density at small x [20,26], and keeps a positive den-
sity of small-x gluons at low Q2 [27]. All order resummed
power corrections – coherent parton recombinations to the
parton evolution should be very valuable for approaching

the region of parton saturation from the perturbative side
and for getting a reliable picture of small-x partons [28,
29].

4 Power correction to Drell–Yan cross section

It was shown by the NA38 and NA50 Collaborations that
muon pair production for a dimuon invariant mass be-
tween φ and J/ψ, known as the intermediate mass re-
gion (IMR), in heavy nucleus–nucleus collisions exceeds
the expectation based on a linear extrapolation of the p–A
sources with the product of the mass numbers of the pro-
jectile and target nuclei [30]. The excess increases with the
number of participant nucleons, and the ratio between the
observed dimuon yield and the expected sources reaches a
factor of 2 for central Pb–Pb collisions. There have been
a lot of efforts to attribute such an excess to the enhance-
ment of open charm production [31], thermal dimuons
production [32], and secondary meson–meson scattering
in nuclear medium [33]. As shown in [30], the Drell–Yan
continuum is the dominant source of the dilepton produc-
tion in this mass range. An enhancement in the Drell–Yan
continuum is much more effective than all other sources
for interpreting the observed excess.

In hadron–nucleus and nucleus–nucleus collisions,
more partons are available at a given impact parameter.
Before the hard collision of producing the lepton pair, par-
tons from different nucleons can either interact between
themselves, as sketched in Fig. 8a which leads to the uni-
versal nuclear dependence in parton distributions, or in-
teract with the incoming parton, as sketched in Fig. 8b
which gives the medium-size enhanced power corrections

A

q µ

A

qµ

A

qµ

a b c

Fig. 7. Sample DIS diagrams have initial-state collinear diver-
gence involving parton recombinations

A
q

h

a

q
Ah

b
c

Fig. 8. Sketch for Drell–Yan process in a hadron–nucleus col-
lision with multiple interactions internal to the nucleus a and
sensitive to hard scattering b, and the nuclear modification
factor, RAB(Q), as a function of the dilepton mass Q
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Fig. 10. Drell–Yan with a time-like hard scale

[34]. For the kinematics of the IMR Drell–Yan process,
parton distributions have a weak nuclear dependence and
produce a small reduction to the cross section. On the
other hand, the medium-size enhanced power corrections
are process dependent, and actually increase the produc-
tion rate and become more important when Q2 decreases
[34]. Let inclusive Drell–Yan cross section in nuclear col-
lisions be approximated as

dσAB

dQ2 ≈ AB
dσ(S)

NN

dQ2 +
dσ(D)

AB

dQ2 + . . .

≡ AB
dσ(S)

NN

dQ2 [1 +RAB(Q)] , (22)

where the superscripts (S) and (D) represent the sin-
gle and double scattering, respectively. The RAB(Q) de-
fines the nuclear modification factor of the Drell–Yan
continuum. Figure 8c shows the calculated RAB(Q) from
medium-size enhanced double scattering [34]. In evalu-
ating Fig. 8c, we used the same quark–gluon correlation
function, Tq(x,A), and neglected the A-dependence in
the parton distributions. Therefore, we expect that the
true enhancement to the Drell–Yan continuum might be
slightly smaller than RAB(Q) in Fig. 8c, which is a very
significant effect.

It is perhaps surprising that the medium-size enhanced
power corrections to the DIS and Drell–Yan cross sections
carry different signs. The sign difference is a consequence
of the kinematic nature of the calculated leading power
corrections. The sketch in Fig. 9 shows that the sum of
multiple soft rescattering to the final-state parton in DIS
effectively broadens the parton’s transverse momentum
[35] (or gives the parton an effective mass [22]), and the
on-shell condition of the final-state parton forces an ex-
tra momentum fraction ∆xp to the incoming parton. On
the other hand, the multiple initial-state soft rescattering
in the Drell–Yan process broadens the incoming parton’s
momentum, and the kinematics (or the measured qµ) of
the observed dilepton pair forces the active parton from
the target to take away some of its momentum, a negative
shift in the momentum fraction, as shown in Fig. 10c.

A A

γ* γ*

Q

γ γ

kT kT

A A

lT

-lT+kT

PS

kT
2

a b

Fig. 11. a Lowest order diagram that contributes to the Drell–
Yan transverse momentum broadening in hadron–nucleus col-
lisions; b sketch for the lowest order contributions to the aver-
aged dijet momentum imbalance in photoproduction

5 Transverse momentum QT broadening

Coherent multiple rescatterings not only modify the pro-
duction rate of the inclusive cross sections, but also affect
the momentum distribution of the produced particles. Al-
though the amount of broadening due to each soft rescat-
tering is too weak a scale to warrant a reliable calcula-
tion, an averaged broadening in a hard collision could be
a physical quantity calculable in pQCD [2].

In [35], Drell–Yan transverse momentum broadening
was calculated in pQCD by evaluating the lowest order
soft rescattering diagram in Fig. 11a. Although the direct
QT modification from soft rescattering to dσ/dQ2dQ2

T is
not perturbatively calculable because of the size of the
small QT kick, the QT broadening,

〈Q2
T〉 ≡

∫
dQ2

TQ
2
T

dσ
dQ2dQ2

T

/ ∫
dQ2

T
dσ

dQ2dQ2
T
, (23)

is calculable [2,8]. It was found that the Drell–Yan trans-
verse momentum broadening in hadron–nucleus collisions
can be expressed in terms of the same quark–gluon corre-
lation function Tq(x,A) (not its derivative) [35],

〈Q2
T〉 ≈

(
4π2αs

3

) ∑
q e

2
q

∫
dx′fq̄/h(x′)Tq(τ/x′, A)/x′∑

q e
2
q

∫
dx′fq̄/h(x′) fq(τ/x′, A)/x′ ,

(24)
where

∑
q runs over all quark and antiquark flavors, eq is

the quark fractional charge, and τ = Q2/s, in terms of the
lepton-pair invariant mass Q and hadron–hadron center of
mass energy,

√
s.

Adopting the model in (13), the lowest order Drell–Yan
transverse momentum broadening in (24) can be simplified
as

〈Q2
T〉4/3 =

(
4π2αs

3

)
λ2A1/3 . (25)

By comparing (25) to data from Fermilab E772 and CERN
NA10 experiments [36,37], it was found [35] that λ2

DY ∼
0.01 GeV2, which corresponds to ξ2DY ∼ 0.04 GeV2; that is,
about a factor of 2 smaller than what was extracted from
inclusive DIS data, where the leading twist nuclear depen-
dence was not included. The difference might be caused by
the difference between initial-state and final-state rescat-
tering effects [2].

The momentum imbalance between two final-state jets
in photoproduction off a nuclear target was calculated by
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evaluating the diagrams like one in Fig. 11b, and was com-
pared with the Fermilab E683 data [19], with the assump-
tion that the momentum imbalance between two jets is
approximately the same as the momentum imbalance be-
tween two final-state partons. Again, the calculated mo-
mentum imbalance was expressed in terms of the same
quark–gluon and gluon–gluon correlation function [19].
By comparing with the momentum imbalance data for
the jet transverse momentum pT > 4 GeV [38], it was
found [19] that λ2

dijet = 0.05–0.1 GeV2, which corresponds
to ξ2 ∼ 0.2 GeV2, which is about a factor 2 bigger than
what was found in DIS. As pointed out in [2], high order
corrections to initial-state and final-state soft rescattering
could be very different and significantly reduce the differ-
ence of the non-perturbative parameter.

6 Nuclear suppression
in hadron–nucleus collisions

Dynamical nuclear effects induced by soft rescattering can
be studied through the ratio of particle production rates
in hadron–nucleus and hadron–hadron collisions. How-
ever, there is no observed variable, like xB in inclusive
DIS, that can directly measure the coherence length of
the hard scattering. All incoming parton momentum frac-
tions are convoluted over, and the strength of the collision
is measured by Lorentz invariants, like the Mandelstam
variables, ŝ, t̂, and û. Unlike in DIS and in the Drell–
Yan process, there is both initial-state and final-state soft
rescattering in hadronic collisions, which could in princi-
ple lead to medium-size enhanced power corrections. Since
the hard scales, ŝ, t̂, and û, in hadronic collisions are of-
ten much larger than a couple of GeV2, the effect of the
medium-size enhanced power corrections to hard probes in
hardonic collisions is in general less significant. However,
in the most forward (backward) region, the invariant t̂ (û)
could be much smaller than the other invariants, so that
the power corrections in 1/t̂ (1/û) could become very im-
portant [14].

Consider, for example, the single hadron inclusive pro-
duction in hadron–nucleus collisions as shown in Fig. 2b.
Once we fix the momentum fractions xa and z1, the effec-
tive interaction region is determined by the momentum
exchange qµ = (xaPa − Pc/z1)µ. In the head-on frame of
q − Pb, the scattered parton of momentum 
 interacts co-
herently with partons from different nucleons at the same
impact parameter, just like that in DIS. Interactions that
take place between the partons from the nucleus and the
incoming parton of momentum xaPa and/or the outgoing
parton of momentum Pc/z1 at a different impact param-
eter are much less coherent and actually are dominated
by the independent elastic scattering [39]. Similar to the
DIS case [11], we find [14] that resumming the coherent
scattering with multiple nucleons is equivalent to a shift
of the momentum fraction of the active parton from the
nucleus in Fig. 2b,

xb → xb

(
1 +

Cdξ
2(A1/3 − 1)

(−t̂)

)
, (26)
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Fig. 12. Figure from [14]. Suppression of the single and double
inclusive hadron production rates as a function of pT in d+Au
collisions at

√
s = 200 GeV2 at different rapidities (top) and

at different impact parameters (bottom). The trigger hadron
pT1 = 1.5 GeV, y = 3, and the associated hadron at y = 0

with the hard scale t̂ = q2 = (xaPa−Pc/z1)2 and the color
factor Cd depending on the flavor of parton d. Cq(q̄) = 1
and Cg = CA/CF = 9/4 for quark (antiquark) and gluon,
respectively. The shift in (26) leads to a net suppression
of the cross sections, and the t̂-dependence of this shift
indicates that the attenuation increases in the forward ra-
pidity region.

The top panels of Fig. 12 show the rapidity and trans-
verse momentum dependence of Rh1

dAu(b) and Rh1h2
dAu (b), the

ratio of single and double hadron production, respectively,
in minimum bias d+Au collisions. The amplification of the
suppression effect at forward y1 comes from the steepening
of the parton distribution functions at small xb and the de-
crease of the Mandelstam variable (−t̂). At high pT1, pT2
the attenuation is found to disappear in accord with the
QCD factorization theorems [40]. The bottom panels of
Fig. 12 show the growth of the nuclear attenuation effect
with centrality.

Dihadron correlations C2(∆ϕ) = 1
Ntrig

dN
h1h2
dijet

d∆ϕ associ-
ated with 2 → 2 partonic hard scattering processes, af-
ter subtracting the bulk many-body collision background,
can be approximated by near-side and away-side Gaus-
sians. The acoplanarity, ∆ϕ �= π, arises from high order
QCD corrections and in the presence of nuclear matter –
transverse momentum diffusion [39]. If the strength of the
away-side correlation function in elementary N + N col-
lisions is normalized to unity, dynamical quark and gluon
shadowing in p + A reactions will be manifest in the at-
tenuation of the area AFar = Rh1h2

pA (b) [14].
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Fig. 13. Figure from [14]. Centrality dependence of C2(∆ϕ) at
various rapidities and moderate (left) and small (right) trans-
verse momenta. Central d + Au and p + p data from STAR
[43]

The left panels of Fig. 13 show that for pT1 = 4 GeV,
pT2 = 2 GeV the dominant effect in C2(∆ϕ) is a small in-
crease of the broadening with centrality, compatible with
the PHENIX [42] and STAR [43] measurements. Even at
forward rapidity, such as y1 = 2, the effect of power cor-
rections in this transverse momentum range is not very
significant. At small pT1 = 1.5 GeV, pT2 = 1 GeV, shown
in the right-hand side of Fig. 13, the apparent width of
the away-side C2(∆ϕ) is larger. In going from midrapidity,
y1 = y2 = 0, to forward rapidity, y1 = 4, y2 = 0, we find a
significant reduction by a factor of 3–4 in the strength of
dihadron correlations. Preliminary STAR results [44] are
consistent with our predictions.

7 Summary and outlook

We have briefly reviewed a pQCD factorization approach
to coherent multiple scattering and argued that the A1/3-
type medium-size enhanced power corrections caused by
multiple soft rescattering can be consistently calculated
in pQCD. We presented calculations of rescattering ef-
fects in inclusive cross sections as well as transverse mo-
mentum broadening (or the moment of particle transverse
momentum distributions.). By studying coherent multi-
ple scattering, we can probe new sets of fundamental and
universal multiparton correlation functions in a nuclear
medium. These new functions provide new insights into
the non-perturbative regime of QCD.

Initial pQCD calculations of multiple rescattering ef-
fects is very successful in understanding the nuclear depen-
dence of inclusive cross sections. For a wide range of ob-
servables, the estimate for the only unknown parameter is

reasonably consistent. With a single unknown parameter,
the calculations describe many observables and their nu-
clear dependences fairly well. The factorization approach,
with its intuitive and transparent results, can be easily ap-
plied to study the nuclear modification of other physical
observables in p+A reactions. The systematic incorpora-
tion of coherent power corrections provides a novel tool
to address the most interesting transition region between
“hard” and “soft” physics in hadron–nucleus collisions.
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